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Solvable biological evolution model with a parallel mutation-selection scheme
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Based on the connection between a quantum spin model and an asexual biological evolution model with a
single-peak fithess function in parallel mutation-selection scheme, we solve exactly both static and dynamics of
the evolution model. We find that relaxation in such a parallel scheme is faster than that in a connected scheme
of Eigen model. Our method can also be extended to other fitness functions.
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Classical and quantum spin mod¢ls2] have been con- obtained by exadtl6] or approximatg17,18 methods.
sidered to be related to a variety of physical, mathematical, Biological Evolution Modelln both connected and paral-
and biological problems. Thus a better understanding or sdel mutation-selection models, a genome configuration is
lution of the former can often lead to a better understandingpecified by a sequence Nfspin valuess,=+1, 1<k<N.
of the latter. Exact solutions of microscopic models oftenwe denote the ith genome configuration by S
reveal important developments of theory, which cannot be= (¢ gz ,§N) andS;=(1,1,...,2, i.e., all spins are 1; the
matched in approximate solutions of the same models. In thgrobability of theith genome at timet is given by Ps
present paper we will show that the method used in the SO= (1) and the fitness; is the average number of offsprings
lution of quantum spin models can be applied to solve exyar nit time, which is a functiof of S, i.e.,r,=f(S).
actly an asexual biological evolution model and answer som In the Eigen model, elements of the mutlation matix

important open questions of biological evolution. represent probabilities that an offspring produced by state

Biological evolut_ion and associated genetic mOdel_S hav%hanges to state and the evolution is given by the set df 2
attracted the attention of researchers across various fields f b

more than a centurf3-15. In the popular microscopic ¢ upled equations for'2probabilitiesp;

Eigen model of asexual evolutidh, 6], individuals have off- g oN oN
spring that are subjected to mutation that connects with a ap _ ool Ot =S 1
selection. In the parallel mutation-selection model, a muta- dt izl QifiPj+ Pi| Qi J:El P ) @)

tion mechanism and a selection mechanism are two indepen-

dent processes that take place concurrefilly The proper \yherep, satisfiesS2; p;=1. The mutation matrix is defined
choice of the mutation-selection scheme is an important opegg Qi =qN-d00)(1-q)0), whered(i,j) = (N_Erku_l Si<sf<)/2 is
question in modern evolutionary biologg-10. It has been o Hamming distance between configurati&_andsj. The

h il both h X licati Qarameter 1q is a probability per site for mutation. The
schemes are similgt1]. In both cases there is a replication gimnjest choice of is the single-peaked function with
in the system with some rate. In the parallel case there are

mutations with some rate uniform in time. In the connected r=A; =1, i#1. (2)
case these mutations are strictly located at the replication

events. In this paper we will show that for both low and highFor this fitness function, Eigen used information theory to
mutation rates, the relaxation in the parallel scheme is fastederive the exact error threshold:

than that in the connected schelifgg. 1).

Statistical mechanics has been applied to investigate the P
discrete time version of the Eigen modéR,13. Recently, 13
Baakeet al.[14] mapped equations of the parallel model into
the Schrodinger equation in imaginary time for quantum t 1.2 o

spins in a transverse magnetic field. The model with a ferro- 1 _— 4,
magnetic fitness function proportional to the square of the

total magnetization has been solved for both static and dy-
namics[14,15. Based on the connection between the paral-

lel model and the quantum spin modé&H], here we derive

an exact solution of the parallel model with a single-peaked D
fitness function, which is more relevant for biology, and y=N(1-q)
compare it with the result for the connectégigen) model

FIG. 1. Relaxation periods as a function of mutation rates.
Dashed and solid lines are for connected and parallel schemes,
*Electronic address: huck@phys.sinica.edu.tw respectively.
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What are the differences between two models? For the
parallel case, both mutation and replication terms are char-

Here y=N(1-q) is the number of mutations per genome peracterized by rates with dimension of inverse time, and for the

replication. It is important to note that while E() allows
v>1, it has been observed thais less than one in asexual
evolution[19-21].

connected scheme mutation mat@y is dimensionles$l0].
Eigen model does not have symmetries like E@sand(8).
Due to such symmetries actually the parallel model has only

For the parallel mutation-selection model, the dynamics isone free parametey,/J,, while Eigen model has twa and

given by

oN

-2 Y
j=1

oN

d
A > m;p; + P (4)
j=1

dt £

[+-5)

wherem; are the elements of the mutation matrix. By com-
paring Eq.(1) with Eq. (4) one can notice that for E@l) the

mutation is connected with the replication, therefore we de-

note this model as a connected one; for &jtwo processes
(replication with the rate; and mutation with the ratey;)
are independent, thus we call it a parallel model.

In the following we adopt the following mutation matrix
after Baakeet al. [14]: m;=vy, for d(i,j)=1, m;=0 for
d@i,j)>1, andm;=-N1, for i=j. Herey, reflects the muta-
tion rate. Baakeet al. [14] realized that, for the fitness
=f(S), Eq.(4) is equivalent to the evolution of the quantum-
mechanical spin system described by the Hamiltonian

N
~H=9y> (7= 1) +f(d%,...,0%),
i=1

(5)
d 2N oN
d—tE p(D|S)=-HX pi(b)]S),

i=1 i=1

where o denotes the Pauli spin operator d& is the stan-
dard notation for the spin state. It follows from E§) that,

starting att=0 from the initial distributionp?, after a timet

the new distributiorp, can be computed as

2 (sle™s)p]

Pi 7 )
(6)

Z= 2 p]QZija zZ; =(sle™s),
ij

where(S|e™S) is the standard notation for the transition
matrix from configurationS to configurationS, and T(t)

=e M is the time evolution operator. Equatio®) is invari-
ant under the transformation

f(9) — (S +c. (7)

Solving Egs.(5) and(6) one can rescale the results to com-
pare those in the connected model:

£(S) — f(S)IL, t—tL. (8)

For the single-peaked fitness function, we tak&)=JyN
when S=S; and f(§ =0, otherwise, which is equivalent to
the choice of Eq(2) for the Eigen model.

Yo — Yo/L,

g. Thus Eigen model can describe wider situations compared
with the parallel case.

Error Threshold Now we proceed to derive the error
threshold of the parallel model and consider the following
fithess function:

N p
2, of
(9 =3N =~ | -

9

wherep is a positive integer. Ap— <, (S of Eq. (9) be-
comes the single-peaked fitness function defined abii&,
of Eq. (9) for p=2 was studied by Baaket al. [14]. For any
value of p an exact method of Suzuki-Trotter formalism
[22,23 can map the system of E@5) to the problem in
classical statistical mechanics. A simple presentation of the
formalism for the model defined by Eq%) and(9) is given
in the Appendix of the present paper. Moreover, for the large
values ofp the problem is drastically simplified. For the
guantum spins witlp-spin interactions in a transverse mag-
netic field it has been foun@3] that all the order parameters
(magnetizationsare either 1 or 0 and one should take either
only transverse interactiony,=f,(o%—1)] or only the lon-
gitudinal one(JoN[(ZX.; of)/NJP—Nyp). We take the form of
interactions, which gives a larger contributionzof Eq. (6).
The ferromagnetic phase for the model of E6). has been
studied in Ref.[24]. We need only slightly change those
results to calculate matrix elements. In the Appendix we
present a rigorous derivation of this trick. Here we only out-
line the main ideas.

To derive error threshold let us consider a situation, when
originally all the individuals are just in the peak configura-
tion. We take

(Sle™s) ~ exgN(Jo = yo)t]. (10)

With exponential accuracy we have for the other matrix el-
ements

N
<S|e_Ht|§>=(S|eXP[ YOKE (ok- 1)]t|§>- (11
=1

The last expression can be factorized as the Cartesian prod-
uct of matricesTiB in the two-dimensional space, whose

matrix  elements are  defined by Ti,=Ts,
=exp—ygt)sinh(yt) and  Ti,=Ta,=exp—yot)cosh yot).
Thus,
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N _ The saddle point conditiofwith respect td) leads to
(siTisy=11(sdTsk
k=1 1-m
tanh yoto] = (17)

= [exp(- yoh)sinh(yot) I"[exp(— yot)cost{ygt) ], k+ ke =1+

(120 with k=Jy/y,. There is a macroscopic concentration in the

. configurationS;, when the contribution of Eq.16) to Z is
whereny andny are, respectively, the number of unchangedyy ey than 1 and the total contributions of other configura-

and flipped spins. With exponential accuracy we have that tions[according to Eq(13)] is of order 1. Thus for a transi-
tion periodt; we deduce a condition

2 (S[Tls) = 1. (13)
j#1 1+m -m )
——In coshiygte) —t1yo+ In sinh(yto)
The contribution of the peak configuration to Z is €XJ, 2 2
- yo)t]po, the other -1 configurations give a contribu- +Jo(t; — o) = 0. (18)
tion ~1 to Z. In the limit of larget, the peak configuration i ) )
dominates and we have the error threshold. Therefore, the relaxation timg(m,Jy,k) can be obtained
Jo> 7o. (14) from Eq.(18) as
In the Appendix, we obtain the error threshold f¢8) of t(m,Jo.K) = 1
Eq. (9) for finite p; the result forp=2 is consistent with the = """ ™ 35—y,
result of Baakeet al. [14]. 14m 1-m
Relaxation PeriodsLet us calculate rel_axation_ peﬁon in x| ky— =——In cosHy) - ——In sinh(y) |,
the parallel scheme. In the case of a uniform distribution of 2 2
initial probabilitiesp?, system will relax to a steady distribu- (19)
tion in tq,, When the contribution of the peak configuration o
to the Z function e~ 7Nt will dominate inZ overeN " 2: wherey=tyy,. In the casey—Jy, Eq. (19) implies thatt;
In 2 diverges: t;~1/(Jy—y,). For the typical biological case
thar = T (15 vo(1-m)<Jy, EqQ. (19) gives an asymptotic for the parallel
0~ 7% scheme relaxation:
To derive the relaxation period from a more general initial
configuration to the peak configuration, we assume that ini- |nze—‘]0
tially only one configuration(S=|m)) is occupied, which to=(1-m) (1-m)yo (20)
has anm overlap with the peak configuratio;=|1): par ™ 2(Jo— 7o)

SN, s=Nm To calculate rigorously the matrix element | _ . h he Ei
(1]T(t)|m) one should calculate the matrix element in Suzuki- -€t US compare relaxations in two schemes. For the Eigen
model, we give an asymptotic formula from our exact solu-

Trotter formalism considering the sum along all trajectories.. ) d . . i
(intermediate configurations---S;---S,. It is easy to check tion [16] (consistent with earlier approximate resylis]):

that the contributions are dominated by expressions such as 2eIn(A+1)

S-S, S -+ S;, where the intermediate spin st&8gappears Inw

first time at the moment, and fort> t, the system remains teig= (1 _m)N_—y_ (21)
at S;. The contribution from such series of configurations is 2(Ae7-1)

L?Lge?; tgggrtnz\zzglo;tc?hnemgg:gg;tOftﬁg:gacroenzgumrg'onssmcetpa,, teig: and mutation rates depend on parameters of
#+ S, at the later moments. To calcula?te the principal contri-the models, I..Jo andr for the parallel model, and and

: : . . v=N(1-q) for the Eigen model, to compare relaxation times
bution to (1|T(t)|m) one should find the maximal value of . .

o : . : _ and mutation rates between two models, we should first es-
contributions by. the- trajectories Wit§(f)=5, for t=1o. In tablish the correspondence between parameters of two mod-
the bulk approximation, els. For this purpose let us consider the parallel and con-

_ _ _ nected schemes with equivalent fitness functidgiN=(A
(ATOIm) ~ exdN(Jo -~ 7o)t~ to) K1| —1). For the distributionp;, the Eigen model has the muta-
N tion rateN(1-q)=; pir;. In parallel scheme the total number
xexpl 0> (o= 1) |tolm) of mutations isy,N, which is independent of frequencips
k=l One reasonable choice is to take (Eigen model’s mutation

1+m rate in peak configuratiop;=1) and put it as a parallel
~exp N In cosfityyo) scheme mutation ratdy,,
1-m Ny, =A 22
+ In sinh(tyyo) + Jo(t = to) = Yot)]- omrY 22

(this is the maximal mutation rate among different distribu-
(16) tions p;). For this choice, we have

046121-3



D. B. SAAKIAN AND C.-K. HU PHYSICAL REVIEW E 69, 046121(2004)

2e(A-1) In conclusion, we have derived the error threshold of Eq.
”m (14) and relaxation times of Eq$15) and(19) for a simple
ty par= (L =M)N Y , (23) single-peak fitness function. The same method could be ap-
’ 2(A-1-Ay) plied to solve exactly other evolution models in both parallel
and connected schemes with several choice of fitness func-
and error threshold of Ed4) transforms to tions: Random energji 2], isolated peaks with some widths,
mixture of royal road[26] and generalized random energy
y< Ll (24) [27] like fitness functions. The last case is realistic for evo-
A lution of B cells [28], and a good approximation for other

itness functions. All these situations haven@like interac-

. . . . i
In observed biological species mutation schemes as a ru{%n with p—co (m is the magnetization For the case of
are fixed: either parallel or connected. Let us assume that iggdels with a finitep the solution is becoming highly in-

a hypothetical systenit is possible to organize such situa- yolyed. We could not derive the analytical dynamics of the
tion in digital life) .transitions between Qiﬁerent mutatio_n p=2 case, solved in Ref14] with an alternative method,
schemes are possible and we are looking for the survivajile in the Appendix we derive the correct error threshold.
condition. Our choice of E(22) corresponds to the worst e compared the results of parallel and connected
case with highest mutation rate. Therefore we have the congchemes to conclude that even at the limit of vanishing mu-
dition of Eq.(24) instead of the Eigen condition of E(). It tatjon rates two mutation schemes give a firfitenvanish-
is interegting thqt real data for asexual biological evolutioning) difference in relaxation periods as shown in E27).
are consistent with Eq24). o . Our rigorous result contradicts widely accepted opinion that
Let us consider the second more realistic mapping bepyo schemes are equivalent, at least for low mutation rates.
tween mutation rates of two schemes. We take as a mutatiofherefore our exact solution gives unexpected result. Exact
ra_te the mean mutation rate in steady state d|st_r|but|on IRolutions of microscopic models can clarify other principal
Eigen model. For the large values Af one can derive that oments in biology, complementing two other sources of

p1=€7” [12,16, and we take reliable scientific results in this area: experiments with real
_ or artificial organismg29,3Q.
Nyo=nApL+1-py) = A(A-De7+1], We have derived our results for infinite populations. For
(25  the finite case we should consider separately the random dif-
In 2e(A-1) fusion (before peak configuration has been discovemtt
(L -mH(A-Dexp— y) +1] evolution with at least one individual in peak genome. Our
t2par= (1 ~MN A(A-1)(1-e) -] : approach is sftill valid for _the second perifg <t<t,) for .

very general fitness functions. The treatment of the first dif-

For error threshold at larga, we have fusion period(0<t<tp) is more complicated.

For some biological systems, e.g., virus or immune sys-
v tem [18,31], to function or survive in changing environ-
1-yexd-y] ments, fast relaxations are necessary. In such situations the
choice of parallel scheme is preferable. In observed species
Let us now compare relaxation periods in both schemesy~1 or less in asexual evolutiofl9-21 (even for y=1
At low mutation rates, Eqg23), (25), and(21) diverge loga-  parallel scheme is faster almost twjcéut there are other
rithmically and there is a finite difference: situations: quantum simulated annealing at low temperatures,
] _ origin of life, and digital life[32] where themutation rates
“mo(tEig_tl,par): |ln"é(tEig‘t2,par) could be much larger than 1. In such cases the parallel
7 T scheme with exponentially fast relaxation of E2@) is pref-
A-1 erable. While we derived E@28) for the case of single-peak
InIn(A+1)=In A fitness function, perhaps it is valid for more general situation.
=(1-m)N 2A-1) . Eigen model is the paradigm of complex adaptive systems
[33], therefore it is interesting to look for the whole range of
(27) parameters in that model as well as in the parallel model.
. Page and Nowak34] considered nonlinear generalization of
Thus the two schemes are different even at very small MUgjgen model with applications to evolutionary games and
tation rates and the parallel scheme is slightly faster. In F'gtanguage evolution. It would be interesting to consider the

1 we plott; par andtgig as a function ofy, dash and solid  gimjjar generalization of the parallel model and compare
lines represent, respectively, the relaxation periods for congqir relaxation periods.

nected and parallel schemes. We note that the connected

scheme relaxes more slowly at large values yfand We thank E. Baake, J. P. Crutchfield, J. Dushoff, A. K.
teig(V /o par¥) =1.77 aty=1, which is qualitatively simi- Kolakowska, D. Krakauer, L. Peliti, Th. Nieuwenhuizen, P.
lar to the case that classical simulation annealing is sloweBchuster, A. L. Perelson, and especially C. Wilke for the

(A-1)> (26)

than the quantum onj@5]. For very largey, we have discussions. D.B.S. thanks Santa Fe Institute and Mississippi
State UniversityDepartment of Physics and ER@r hos-
teig/to par ~ EXP(Y). (28) pitality. This work was partially supported by the National
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Science Council of the Republic of Chir@aiwan under
Grant No. NSC 91-2112-M-001-056.

APPENDIX: SUZUKI-TROTTER METHOD
FOR THE QUANTUM SPIN SYSTEM
Formalism To calculate formulas of Eq(6) and Z
=2 Z;jp;(0) based on Hamiltonian defined by EqS) and
(9) we need to evaluatez;=(S|e™"S), where §
_{sK} S= {sk} 1<k=N, and we used notatior= g (t re-

sembles inverse temperature in quantum statistical mechan-

ics).
For the HamiltoniandH=A+B, where A and B do not
commute, we can use the Suzuki-Trotter metf22],

(Slexd- BA+B)]S)

_ ||m<§|{ex;<— fA)exp(—f )} S)
sl B
ok it

(A1)

To transform the quantum statistical mechanical problem
into the one in classical mechanics, instead of quantum spins

oy, we introducel +1 classical spins'k,1$ ksN,1l=<I<L

+1 (corresponding to introduction of the identity
=3, |a@)a| between any palr of bracke)tE‘ZZ] We take for
the boundary configurationy=s,,v;"*=s| and use a repre-
sentation ofo* in the basis ofv),v==*1:

<Ui|eUXByO/L|Uj> = \/S|n’~<&ﬁ)cosr(ﬂylﬁ) eBUin,
L L
B = tanl‘( 70:3)
L

For the partitionZ; at the limit L—c it is possible to
derive[23,24

(A2)

L N
Z(S,S) =ATr, exp[E > Booit = BN
1=1 k=

. ﬁJONEL: (EL ”'k)p] |

L £\ N

(A3)

where A=[2sinh(2By,/L)]V?*™N. The “Tr" means a sum-
mation over all spin configuratiorEszﬂ,1<l <L. In Eq.
(A3), the interaction is only via magnetizations)
=3 v/N. We introduce magnetization variabig and
corresponding Lagrange coefficieggh,. To derive the

next equation, we need the integral representation fér a

function:

PHYSICAL REVIEW E 69, 046121(2004

Lflw dh| eXp|: Bh|m| + Bh E Uk]

2mil LS

(A4)

=5(Nm—§v:(>.

k=1

We use the identityl; Nfdm&(Nm - E k=1 vk) 1 and derive

Z(S,S) =Aexd- Vo,BN]HZ | dh. f dm

xTrVexp[— NTBE hm, + NJL°BE mp
—E h E v +BY > vkv'+1:| . (AB)
| el

In the last expression sping with differentk decouple and
we can perform calculations, considering the saddle point via
my, h;, giving the maximal value for the exponent:

Z(S.,§) = AH Lo I—f—mo dh,f dm exp[ Z hm,

N N\I]_oﬂzl mP - BN +In z[B,{h|},N,L]} ,

(A6
7B,{h},N,L]=z.(B,{h}, LN ™2z (B {h},L)NE™/2,

Herez,[B,{h},L] andz[B,{h},L] are, respectively, the par-
tition function of the one-dimensionélD) Ising model with
symmetric and asymmetric boundary conditions at inverse
temperaturd3 and magnetic fieldh /L at positionl, andm is
an overlap of configuration§ and §. We should consider
different saddle point solutions fan, andh, and choose the
one with maximal value in the exponent.

For the case that there is no magnetizatgr0 andh
=0, we have

(1+m)/2

2(5,5) =Az(B,0,LN ™2 (B,0,L)N " exd - Nyol.

(A7)
From Eq.(A2), we derive
BIL
coshB) = er ,
2\/sinr<&8>cosr<&ﬂ)
L L
(A8)
e—yOB/L
sinh(B) =

ol el 7]

For the largel, we have
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. 1 L
B) = B) = — —_—,
sinh(B) = coshB) 2 1/ a7
lim &® \/sinr<@>cosk(%) =1.
L—oo L L

(A9)

Using equations for the Ising model with boundary condi-

tionsvi= v [2]:

z.(B,0,L) =[coshB)" + sinh(B)-]2-71,

(A10)
z.(B,0,L) =[coshB)"- - sinh(B)-]2-71,
we derive forZ(S,S) as well as forZy=%; Z(S,S):
NIn z +In A=N In cosiByy),
(Al11)

NIn z +In A=N In sinh(By,),
In Z(S,S) =N In z +In A= NBy,=N[In coshByo) - o8],

In Zy=N[In 2 +In costiByy) — voB]-

For the nondiagonaZ;; we will give an expression later. We

have that

lim In Z,— 0. (A12)

ﬁHDC

This is a solution for a paramagnetic phase without magne-

tization (m;=0).
The thermodynamicsin the thermodynamic limit one

should consider the saddle point for the exponent of Eq

(AB). As p— o, one should take eithen=0 orm=1(m <1
is equivalent to the choicen=0). To calculate relaxation
period we should calculatg;, then use formul&6). To find
error threshold, we need only investigaig=Tr exd —8H],

PHYSICAL REVIEW E 69, 046121(2004)

h h
W eBcosh<ﬁ—> + \/ezB sinhz(ﬁ—) +e%8,
L L
For the largeL, from Eq.(A9) we have

h —\L ’ L
)

=2eP cosh(BVh? + 3).

In Eq. (A14), we consider a sum over spins, while in
Eqg. (AL10) there is a sum ovelt—1 spins.
Equations(A2), (A13), and(A15) imply that
_NB [”

Z = ——
07 27 o

+JoBmP = Bhm— By,l].

(A15)

joo
dmf dh expIN[In 2 cosliB\h? + 12)
—joo

(A16)

The saddle point condition via andh gives

In Zy=N In 2 cosh[ BVh? + 73] + J;NBmMP = NhBm — 8N,

(A17)
h >
h=JopmP™%, m= tanh[BVh? + 7).
oP et 2 B %
Let us consider the limit of largp and finite 8:
h:Jop, m= 1, |nZO: N‘]OB_ N’}/Oﬁ (A18)

This is the ferromagnetic phase of the mod&t]. The phase
transition can be found, when I in Eq. (A18) with m
=1 and InZ, in Eq. (A11l) with m=0 coincide:

JoB=1In 2 +In coskiByy). (A19)

At the limit of B— oo (this corresponds to the infinite relax-
ation period we have

‘]0 =Y. (AZO)

This is an error threshold condition. The ferromagnetic phase

becaus& and Z, have the same bulk singularity, connected©f Eq. (A18) corresponds to the effective selection and the

with error threshold. Calculation & is an easier problem,
as there is a translation symmetly-l+1, and we can
choosem =m,h,=h.

Let us consider the case, whetn=m, h,=h. Then we con-
sider an expression fdt,=2; Z(S,S):

ZO:A%fo dmjfx dh

2mi

xexp{JoNBmp +NhBm-y,8N+N In z(B,E,L)} .
(A13)

We have an expression for the 1D Isihgspin partition
function in a magnetic fielth/L [2] at inverse temperatug

Z<B,E,L) => EXDlBE St B—hE a} =Np+AL
L S | L |
(A14)

paramagnetic phase of EGA11l) to absence of selection.
Thus the thermodynamic approach gives accurately the bulk
characteristics. To calculate relaxation dynamics we should
calculate Z(S,S) instead of the simpler expressioh,

=3 Z(S,9).

Correlators in Suzuki-Trotter method.et us calculate
now our main objects/S|T(1)|S) and(§|T(1)|S),j # 1 with
T(t)=e1 From now on, we takeinstead ofg in previous
equations of the Appendix.

While looking via the saddle point the maximum Bf
one should divide the total period of tiniénto K pieces and
as a saddle point solution take either<1 or m=1 for 1
<|=<K. The choicem=0 is connected with the random dif-
fusion, the choicen =1 corresponds to the evolution in peak
configuration. One should take a scheme, giving maximal
value of(§[T(1)[S).

To calculate(S;|T(1)|S), we simply takeK=2. We divide
the total timet into two periods: for period0,ty] there is a
random diffusion from the original configuratiod to the
peak one, then an evolution & for the periodty,t]. Thus,
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while calculating(S;|T(t)|S) we consider an ansatz for the (REM) has been considered in Ref&3,24. In that model

saddle point solution:

m=0, 1<I<Lly m=1, I>L, (A21)

there is alsamP-type random spin-spin interaction pt— oc.
This situation is similar to the case considered in the current
work, only calculations are more involved. In the similar

whereLy=t,L/t. We should consider all possible values of W& it is possible to solve ferromagnetic REM with multi-

Lo.
For the partm=0 we denotel(t)=Tg;¢s and for the part
m=1 we denotel(t)=T,;,;. Thus

(SUTM[S) — (St Tintlt = t0)[S(SH Taits(t0)[S) -
(A22)

To calculate(S)|Tii(t—1p)|S;), we take Eq.(A5) with the
boundary conditionsy, =1,m =1. Thenh; —  like the ones

spin interactions. The close hierarchic models such as royal
road[26] or generalized random energy mod2¥] are also
solvable in this approach.

The case of finitep in Eq. (9) is too complicated. In
Suzuki-Trotter formalism one should consider different finite
my,h, and deal with a partition function of the 1D Ising
model, where the magnetic field changes along the chain of
Eqg. (A6). There are self-consistent nonlinear equations. For
the bulk values oh, and m;, we can take the result of Eq.

in Eg. (A18) and all the diffusion terms disappear and we(A17), but there is a nontrivial boundary slice;=h(l/L),

have a result of Eq(10):
(SUITin(t = to)|Sp) = N0, (A23)

Let us considetS| Tyir(t)|S). We have fori #1,j#1,
m, =0,

Isl=<L,

(A24)

and therefore we miss the interaction term in E&5) [ac-
cording to Eq.(A17) interaction term disappears for any fi-
nite m<1]. Using Eqgs.(A7) and(A1l), we derive

(§|Tairs(0|S) = exp{N(

1+m

In cogyoB)

1
2m|n sinh(yop) - 70,3)] ,

+

(A25)

wherem is an overlap of configuration§ andS.
For the situation of EqtA21) we derive the result of Eq.
(16):

(SUT(H]S) = (S lext X yo(o* = DtollS),

(A26)
wheret, gives a maximum of Eq(A26).
For other matrix elements we take as in EtR),
(§ITM[S) = (S Tairr(V]S)- (A27)

Other fitnesses functiokiVhat other models can be solved

whereh(x) is a nontrivial function. Even the analytical solu-
tion of the casg=2 is a highly nontrivial taskfor the finite
values of p we derive field theoretical equations for the
sourceh(x)]. For p=2 the method of Ref{14] is preferable
to investigate the steady state distribution.

What about error threshold? We guess that from Eg.
(A16) we can derive correct phase transition point, when the
expression for IriZy at B— o, In Zg=BN[ 2/ Vh?+ y3+JomP
—7vo] coincides with the corresponding expression of Eq.
(Al1l) and we thus have

JepnP2 %

V’(Jcprﬂ’ 1)2+ )’S \/(Jcpmp 1)2+ %2) c
(A28)
The error threshold condition is
Jo>J.. (A29)

For the case ofp=2, Eq. (A28) gives J.=v,/2, which is
consistent with the result of Baake al.[14]. ForJy>J,, the
magnetizatiorm can be written as

2
e 1_(39),

2J,

which is also consistent with the result of REt4] for the
magnetizatiorinonzerom is an indicator of successful selec-

tion, butm does not have serious biological meanji§] ).
We guess that EqA28) gives error threshold, for p>2

(A30)

with the same method? Quantum random energy modeds well.
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