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Based on the connection between a quantum spin model and an asexual biological evolution model with a
single-peak fitness function in parallel mutation-selection scheme, we solve exactly both static and dynamics of
the evolution model. We find that relaxation in such a parallel scheme is faster than that in a connected scheme
of Eigen model. Our method can also be extended to other fitness functions.
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Classical and quantum spin models[1,2] have been con-
sidered to be related to a variety of physical, mathematical,
and biological problems. Thus a better understanding or so-
lution of the former can often lead to a better understanding
of the latter. Exact solutions of microscopic models often
reveal important developments of theory, which cannot be
matched in approximate solutions of the same models. In the
present paper we will show that the method used in the so-
lution of quantum spin models can be applied to solve ex-
actly an asexual biological evolution model and answer some
important open questions of biological evolution.

Biological evolution and associated genetic models have
attracted the attention of researchers across various fields for
more than a century[3–15]. In the popular microscopic
Eigen model of asexual evolution[5,6], individuals have off-
spring that are subjected to mutation that connects with a
selection. In the parallel mutation-selection model, a muta-
tion mechanism and a selection mechanism are two indepen-
dent processes that take place concurrently[7]. The proper
choice of the mutation-selection scheme is an important open
question in modern evolutionary biology[8–10]. It has been
suggested that for the case of low mutation rates two
schemes are similar[11]. In both cases there is a replication
in the system with some rate. In the parallel case there are
mutations with some rate uniform in time. In the connected
case these mutations are strictly located at the replication
events. In this paper we will show that for both low and high
mutation rates, the relaxation in the parallel scheme is faster
than that in the connected scheme(Fig. 1).

Statistical mechanics has been applied to investigate the
discrete time version of the Eigen model[12,13]. Recently,
Baakeet al. [14] mapped equations of the parallel model into
the Schrödinger equation in imaginary time for quantum
spins in a transverse magnetic field. The model with a ferro-
magnetic fitness function proportional to the square of the
total magnetization has been solved for both static and dy-
namics[14,15]. Based on the connection between the paral-
lel model and the quantum spin model[14], here we derive
an exact solution of the parallel model with a single-peaked
fitness function, which is more relevant for biology, and
compare it with the result for the connected(Eigen) model

obtained by exact[16] or approximate[17,18] methods.
Biological Evolution Model. In both connected and paral-

lel mutation-selection models, a genome configuration is
specified by a sequence ofN spin valuessk= ±1, 1økøN.
We denote the ith genome configuration by Si
;ss1

i ,s2
i , . . . ,sN

i d andS1=s1,1, . . . ,1d, i.e., all spins are 1; the
probability of the ith genome at timet is given by pSi
;pistd and the fitnessr i is the average number of offsprings
per unit time, which is a functionf of Si, i.e., r i = fsSid.

In the Eigen model, elements of the mutation matrixQij
represent probabilities that an offspring produced by statej
changes to statei, and the evolution is given by the set of 2N

coupled equations for 2N probabilitiespi:

dpi

dt
= o

iÞ j=1

2N

Qij r jpj + piSQiir i − o
j=1

2N

r jpjD , s1d

wherepi satisfiesoi=1
2N

pi =1. The mutation matrix is defined
asQij =qN−dsi,jds1−qddsi,jd, wheredsi , jd;sN−ok=1

N sk
i sk

j d /2 is
the Hamming distance between configurationsSi andSj. The
parameter 1−q is a probability per site for mutation. The
simplest choice off is the single-peaked function with

r1 = A; r i = 1, i Þ 1. s2d

For this fitness function, Eigen used information theory to
derive the exact error threshold:
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FIG. 1. Relaxation periods as a function of mutation rates.
Dashed and solid lines are for connected and parallel schemes,
respectively.
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A . eg. s3d

Hereg;Ns1−qd is the number of mutations per genome per
replication. It is important to note that while Eq.s3d allows
g.1, it has been observed thatg is less than one in asexual
evolution f19–21g.

For the parallel mutation-selection model, the dynamics is
given by

dpi

dt
= o

j=1

2N

mij pj + piSr i − o
j=1

2N

r jpjD , s4d

wheremij are the elements of the mutation matrix. By com-
paring Eq.s1d with Eq. s4d one can notice that for Eq.s1d the
mutation is connected with the replication, therefore we de-
note this model as a connected one; for Eq.s4d two processes
sreplication with the rater i and mutation with the ratemijd
are independent, thus we call it a parallel model.

In the following we adopt the following mutation matrix
after Baakeet al. [14]: mij =g0 for dsi , jd=1, mij =0 for
dsi , jd.1, andmij =−Ng0 for i = j . Hereg0 reflects the muta-
tion rate. Baakeet al. [14] realized that, for the fitnessr i
= fsSid, Eq. (4) is equivalent to the evolution of the quantum-
mechanical spin system described by the Hamiltonian

− H = g0o
i=1

N

ssi
x − 1d + fss1

z,…,sN
z d,

s5d
d

dt
o
i=1

2N

pistduSil = − Ho
i=1

2N

pistduSil,

wheres denotes the Pauli spin operator anduSl is the stan-
dard notation for the spin state. It follows from Eq.(5) that,
starting att=0 from the initial distributionpj

0, after a timet
the new distributionpi can be computed as

pi =
o j

kSiue−HtuSjlpj
0

Z
,

s6d
Z = o

i j

pj
0Zij , Zij = kSiue−HtuSjl,

where kSiue−HtuSjl is the standard notation for the transition
matrix from configurationSj to configurationSi, and Tstd
;e−Ht is the time evolution operator. Equation(6) is invari-
ant under the transformation

fsSd → fsSd + c. s7d

Solving Eqs.s5d and s6d one can rescale the results to com-
pare those in the connected model:

fsSd → fsSd/L, g0 → g0/L, t → tL. s8d

For the single-peaked fitness function, we takefsSd=J0N
when S=S1 and fsSd=0, otherwise, which is equivalent to
the choice of Eq.s2d for the Eigen model.

What are the differences between two models? For the
parallel case, both mutation and replication terms are char-
acterized by rates with dimension of inverse time, and for the
connected scheme mutation matrixQij is dimensionless[10].
Eigen model does not have symmetries like Eqs.(7) and(8).
Due to such symmetries actually the parallel model has only
one free parameterg0/J0, while Eigen model has two:A and
q. Thus Eigen model can describe wider situations compared
with the parallel case.

Error Threshold. Now we proceed to derive the error
threshold of the parallel model and consider the following
fitness function:

fsSd = J0N3o
k=1

N

sk
z

N
4

p

, s9d

wherep is a positive integer. Asp→`, fsSd of Eq. s9d be-
comes the single-peaked fitness function defined above,fsSd
of Eq. s9d for p=2 was studied by Baakeet al. [14]. For any
value of p an exact method of Suzuki-Trotter formalism
[22,23] can map the system of Eq.(5) to the problem in
classical statistical mechanics. A simple presentation of the
formalism for the model defined by Eqs.(5) and(9) is given
in the Appendix of the present paper. Moreover, for the large
values of p the problem is drastically simplified. For the
quantum spins withp-spin interactions in a transverse mag-
netic field it has been found[23] that all the order parameters
(magnetizations) are either 1 or 0 and one should take either
only transverse interactionfg0ok=1

N ssk
x−1dg or only the lon-

gitudinal one(J0Nfsok=1
N sk

zd /Ngp−Ng0). We take the form of
interactions, which gives a larger contribution toZ of Eq. (6).
The ferromagnetic phase for the model of Eq.(5) has been
studied in Ref.[24]. We need only slightly change those
results to calculate matrix elements. In the Appendix we
present a rigorous derivation of this trick. Here we only out-
line the main ideas.

To derive error threshold let us consider a situation, when
originally all the individuals are just in the peak configura-
tion. We take

kS1ue−HtuS1l , expfNsJ0 − g0dtg. s10d

With exponential accuracy we have for the other matrix el-
ements

kSiue−HtuSjl = kSiuexpFg0o
k=1

N

ssk
x − 1dGtuSjl. s11d

The last expression can be factorized as the Cartesian prod-
uct of matricesTa,b

1 in the two-dimensional space, whose
matrix elements are defined by T12

1 =T21
1

=exps−g0tdsinhsg0td and T11
1 =T22

1 =exps−g0tdcoshsg0td.
Thus,
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kSiuTuSjl = p
k=1

N

ksk
i uT1usk

j l

= fexps− g0tdsinhsg0tdgnffexps− g0tdcoshsg0tdgnd,

s12d

wherend andnf are, respectively, the number of unchanged
and flipped spins. With exponential accuracy we have that

o
jÞ1

kS1uTuSjl < 1. s13d

The contribution of the peak configuration to Z is expfNsJ0

−g0dtgp0, the other 2N−1 configurations give a contribu-
tion ,1 to Z. In the limit of larget, the peak configuration
dominates and we have the error threshold.

J0 . g0. s14d

In the Appendix, we obtain the error threshold forfsSd of
Eq. (9) for finite p; the result forp=2 is consistent with the
result of Baakeet al. [14].

Relaxation Periods. Let us calculate relaxation periods in
the parallel scheme. In the case of a uniform distribution of
initial probabilitiespj

0, system will relax to a steady distribu-
tion in tflat, when the contribution of the peak configuration
to theZ function esJ0−g0dNt will dominate inZ over eN ln 2:

tflat =
ln 2

J0 − g0
. s15d

To derive the relaxation period from a more general initial
configuration to the peak configuration, we assume that ini-
tially only one configurationsSi ;umld is occupied, which
has an m overlap with the peak configurationS1;u1l:
ok=1

N sk
i =Nm. To calculate rigorously the matrix element

k1uTstduml one should calculate the matrix element in Suzuki-
Trotter formalism considering the sum along all trajectories
(intermediate configurations) Si¯Sj¯S1. It is easy to check
that the contributions are dominated by expressions such as
Si¯S1,S1¯S1, where the intermediate spin stateS1 appears
first time at the momentt0 and for t. t0 the system remains
at S1. The contribution from such series of configurations is
larger than the sum of contributions of other configurations,
where after havingS1 at the momentt0 there are someSj
ÞS1 at the later moments. To calculate the principal contri-
bution to k1uTstduml one should find the maximal value of
contributions by the trajectories withSjstd=S1 for tù t0. In
the bulk approximation,

k1uTstduml , expfNsJ0 − g0dst − t0dgk1u

3expFg0o
k=1

N

ssk
x − 1dGt0uml

,expFNS1 + m

2
ln coshst0g0d

+
1 − m

2
ln sinhst0g0d + J0st − t0d − g0tDG .

s16d

The saddle point conditionswith respect tot0d leads to

tanhfg0t0g =
1 − m

k + Îk2 − 1 +m2
, s17d

with k=J0/g0. There is a macroscopic concentration in the
configurationS1, when the contribution of Eq.s16d to Z is
larger than 1 and the total contributions of other configura-
tions faccording to Eq.s13dg is of order 1. Thus for a transi-
tion periodt1 we deduce a condition

1 + m

2
ln coshsg0t0d − t1g0 +

1 − m

2
ln sinhsg0t0d

+ J0st1 − t0d ù 0. s18d

Therefore, the relaxation timet1sm,J0,kd can be obtained
from Eq. s18d as

t1sm,J0,kd =
1

J0 − g0

3Fky−
1 + m

2
ln coshsyd −

1 − m

2
ln sinhsydG ,

s19d

wherey; t0g0. In the caseg→J0, Eq. s19d implies thatt1
diverges: t1,1/sJ0−g0d. For the typical biological case
g0s1−md!J0, Eq. s19d gives an asymptotic for the parallel
scheme relaxation:

tpar = s1 − md
ln

2eJ0

s1 − mdg0

2sJ0 − g0d
. s20d

Let us compare relaxations in two schemes. For the Eigen
model, we give an asymptotic formula from our exact solu-
tion [16] (consistent with earlier approximate results[17]):

tEig = s1 − mdN
ln

2e lnsA + 1d
s1 − mdg

2sAe−g − 1d
. s21d

Sincetpar, tEig, and mutation rates depend on parameters of
the models, i.e.,J0 and r0 for the parallel model, andA and
g=Ns1−qd for the Eigen model, to compare relaxation times
and mutation rates between two models, we should first es-
tablish the correspondence between parameters of two mod-
els. For this purpose let us consider the parallel and con-
nected schemes with equivalent fitness function:J0N=sA
−1d. For the distributionpi, the Eigen model has the muta-
tion rateNs1−qdoi pir i. In parallel scheme the total number
of mutations isg0N, which is independent of frequenciespi.
One reasonable choice is to takeAg sEigen model’s mutation
rate in peak configurationp1=1d and put it as a parallel
scheme mutation rateNg0,

Ng0 = Ag s22d

sthis is the maximal mutation rate among different distribu-
tions pid. For this choice, we have
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t1,par = s1 − mdN
ln

2esA − 1d
s1 − mdgA

2sA − 1 −Agd
, s23d

and error threshold of Eq.s4d transforms to

g ,
A − 1

A
. s24d

In observed biological species mutation schemes as a rule
are fixed: either parallel or connected. Let us assume that in
a hypothetical system(it is possible to organize such situa-
tion in digital life) transitions between different mutation
schemes are possible and we are looking for the survival
condition. Our choice of Eq.(22) corresponds to the worst
case with highest mutation rate. Therefore we have the con-
dition of Eq.(24) instead of the Eigen condition of Eq.(3). It
is interesting that real data for asexual biological evolution
are consistent with Eq.(24).

Let us consider the second more realistic mapping be-
tween mutation rates of two schemes. We take as a mutation
rate the mean mutation rate in steady state distribution in
Eigen model. For the large values ofA, one can derive that
p1=e−g [12,16], and we take

Ng0 = gsAp1 + 1 − p1d ; gfsA − 1de−g + 1g,
s25d

t2,par = s1 − mdN
ln

2esA − 1d
s1 − mdgfsA − 1dexps− gd + 1g

2fsA − 1ds1 − ge−gd − gg
.

For error threshold at largeA, we have

sA − 1d .
g

1 − g expf− gg
. s26d

Let us now compare relaxation periods in both schemes.
At low mutation rates, Eqs.(23), (25), and(21) diverge loga-
rithmically and there is a finite difference:

lim
g→0

stEig − t1,pard = lim
g→0

stEig − t2,pard

= s1 − mdN
ln lnsA + 1d − ln

A − 1

A

2sA − 1d
.

s27d

Thus the two schemes are different even at very small mu-
tation rates and the parallel scheme is slightly faster. In Fig.
1 we plot t2,par and tEig as a function ofg; dash and solid
lines represent, respectively, the relaxation periods for con-
nected and parallel schemes. We note that the connected
scheme relaxes more slowly at large values ofg and
tEigsgd / t2,parsgd<1.77 atg=1, which is qualitatively simi-
lar to the case that classical simulation annealing is slower
than the quantum onef25g. For very largeg, we have

tEig/t2,par , expsgd. s28d

In conclusion, we have derived the error threshold of Eq.
(14) and relaxation times of Eqs.(15) and (19) for a simple
single-peak fitness function. The same method could be ap-
plied to solve exactly other evolution models in both parallel
and connected schemes with several choice of fitness func-
tions: Random energy[12], isolated peaks with some widths,
mixture of royal road[26] and generalized random energy
[27] like fitness functions. The last case is realistic for evo-
lution of B cells [28], and a good approximation for other
fitness functions. All these situations have amp like interac-
tion with p→` (m is the magnetization). For the case of
models with a finitep the solution is becoming highly in-
volved. We could not derive the analytical dynamics of the
p=2 case, solved in Ref.[14] with an alternative method,
while in the Appendix we derive the correct error threshold.

We compared the results of parallel and connected
schemes to conclude that even at the limit of vanishing mu-
tation rates two mutation schemes give a finite(nonvanish-
ing) difference in relaxation periods as shown in Eq.(27).
Our rigorous result contradicts widely accepted opinion that
two schemes are equivalent, at least for low mutation rates.
Therefore our exact solution gives unexpected result. Exact
solutions of microscopic models can clarify other principal
moments in biology, complementing two other sources of
reliable scientific results in this area: experiments with real
or artificial organisms[29,30].

We have derived our results for infinite populations. For
the finite case we should consider separately the random dif-
fusion (before peak configuration has been discovered) and
evolution with at least one individual in peak genome. Our
approach is still valid for the second periodst0, t, t1d for
very general fitness functions. The treatment of the first dif-
fusion periods0, t, t0d is more complicated.

For some biological systems, e.g., virus or immune sys-
tem [18,31], to function or survive in changing environ-
ments, fast relaxations are necessary. In such situations the
choice of parallel scheme is preferable. In observed species
g,1 or less in asexual evolution[19–21] (even for g=1
parallel scheme is faster almost twice), but there are other
situations: quantum simulated annealing at low temperatures,
origin of life, and digital life[32] where themutation rates
could be much larger than 1. In such cases the parallel
scheme with exponentially fast relaxation of Eq.(28) is pref-
erable. While we derived Eq.(28) for the case of single-peak
fitness function, perhaps it is valid for more general situation.

Eigen model is the paradigm of complex adaptive systems
[33], therefore it is interesting to look for the whole range of
parameters in that model as well as in the parallel model.
Page and Nowak[34] considered nonlinear generalization of
Eigen model with applications to evolutionary games and
language evolution. It would be interesting to consider the
similar generalization of the parallel model and compare
their relaxation periods.

We thank E. Baake, J. P. Crutchfield, J. Dushoff, A. K.
Kolakowska, D. Krakauer, L. Peliti, Th. Nieuwenhuizen, P.
Schuster, A. L. Perelson, and especially C. Wilke for the
discussions. D.B.S. thanks Santa Fe Institute and Mississippi
State University(Department of Physics and ERC) for hos-
pitality. This work was partially supported by the National

D. B. SAAKIAN AND C.-K. HU PHYSICAL REVIEW E 69, 046121(2004)

046121-4



Science Council of the Republic of China(Taiwan) under
Grant No. NSC 91-2112-M-001-056.

APPENDIX: SUZUKI-TROTTER METHOD
FOR THE QUANTUM SPIN SYSTEM

Formalism. To calculate formulas of Eq.(6) and Z
=o j Zij pjs0d based on Hamiltonian defined by Eqs.(5) and
(9), we need to evaluateZij ;kSjue−HbuSil, where Si

;hsk
i j ,Sj ;hsk

j j, 1økøN, and we used notationt;b (t re-
sembles inverse temperature in quantum statistical mechan-
ics).

For the HamiltoniansH;A+B, whereA and B do not
commute, we can use the Suzuki-Trotter method[22],

kSjuexpf− bsA + BdguSil

= lim
L→`

kSjuFexpS−
b

L
ADexpS−

b

L
BDGL

uSil

; lim
L→`

kSjuFexpS−
b

L
ADexpS−

b

L
BDG¯

3FexpS−
b

L
ADexpS−

b

L
BDGuSil. sA1d

To transform the quantum statistical mechanical problem
into the one in classical mechanics, instead of quantum spins
sk, we introduceL+1 classical spinsvk

l ,1økøN,1ø l øL

+1 scorresponding to introduction of the identityÎ
=oa ualkau between any pair of bracketsd f22g. We take for
the boundary configurationvk

1=sk
i ,vk

L+1=sk
j and use a repre-

sentation ofsx in the basis ofuvl ,v= ±1:

kviuesxbg0/Luv jl =ÎsinhSg0b

L
DcoshSg0b

L
DeBviv j ,

sA2d

e−2B = tanhSg0b

L
D .

For the partitionZij at the limit L→` it is possible to
derive [23,24]

ZsSi,Sjd = ATrv expFo
l=1

L

o
k=1

N

Bvk
l vk

l+1 − g0bN

+
bJ0N

L
o
l=1

L Sok=1

N
vk

l

N
DpG , sA3d

whereA=f 1
2 sinhs2bg0/Ldgs1/2dLN. The “Tr” means a sum-

mation over all spin configurationsovk
l =±1,1, l øL. In Eq.

sA3d, the interaction is only via magnetizationsml
;ok=1

N vk
l /N. We introduce magnetization variableml and

corresponding Lagrange coefficientbhl. To derive the
next equation, we need the integral representation for ad
function:

b

2piL
E

−i`

i`

dhl expF−
Nb

L
hlml +

b

L
hlo

k=1

N

vk
lG

= dSNml − o
k=1

N

vk
lD . sA4d

We use the identitypl NedmldsNml −ok=1
N vk

l d=1 and derive

ZsSi,Sjd = A expf− g0bNgp
l=1

L
bN

2piL
E

−i`

i`

dhlE
−`

`

dml

3Trv expF−
Nb

L
o

l

hlml +
NJ0b

L
o

l

ml
p

+
b

L
o

l

hlo
k=1

N

vk
l + Bo

l
o
k=1

N

vk
l vk

l+1G . sA5d

In the last expression spinsvk
l with different k decouple and

we can perform calculations, considering the saddle point via
ml ,hl, giving the maximal value for the exponent:

ZsSi,Sjd = Ap
l=1

L
bN

2piL
E

−i`

i`

dhlE
−`

`

dml expF−
Nb

L
ol

hlml

+
NJ0b

L
ol

ml
p − g0bN + ln zfB,hhlj,N,LgG ,

sA6d
zfB,hhlj,N,Lg = z+sB,hhlj,LdNs1+md/2z−sB,hhlj,LdNs1−md/2.

Herez+fB,hhlj ,Lg andz−fB,hhlj ,Lg are, respectively, the par-
tition function of the one-dimensional(1D) Ising model with
symmetric and asymmetric boundary conditions at inverse
temperatureB and magnetic fieldhl /L at positionl, andm is
an overlap of configurationsSi and Sj. We should consider
different saddle point solutions forml andhl and choose the
one with maximal value in the exponent.

For the case that there is no magnetizationmi =0 andhi
=0, we have

ZsSj,Sid = Az+sB,0,LdNs1+md/2
z−sB,0,LdNs1−md/2

expf− Ng0bg.

sA7d

From Eq.sA2d, we derive

coshsBd =
eg0b/L

2ÎsinhSg0b

L
DcoshSg0b

L
D ,

sA8d

sinhsBd =
e−g0b/L

2ÎsinhSg0b

L
DcoshSg0b

L
D .

For the largeL, we have
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sinhsBd < coshsBd <
1

2
Î L

bg0
,

sA9d

lim
L→`

eBÎsinhSbg0

L
DcoshSbg0

L
D = 1.

Using equations for the Ising model with boundary condi-
tions vk

1= ±vk
L+1 [2]:

z+sB,0,Ld = fcoshsBdL + sinhsBdLg2L−1,
sA10d

z−sB,0,Ld = fcoshsBdL − sinhsBdLg2L−1,

we derive forZsSi ,Sid as well as forZ0=oi ZsSi ,Sid:

N ln z+ + ln A = N ln coshsbg0d,
sA11d

N ln z− + ln A = N ln sinhsbg0d,

ln ZsSi,Sid = N ln z+ + ln A − Nbg0 = Nfln coshsbg0d − g0bg,

ln Z0 = Nfln 2 + ln coshsbg0d − g0bg.

For the nondiagonalZij we will give an expression later. We
have that

lim
b→`

ln Z0→0. sA12d

This is a solution for a paramagnetic phase without magne-
tization smj =0d.

The thermodynamics. In the thermodynamic limit one
should consider the saddle point for the exponent of Eq.
(A6). As p→`, one should take eitherml =0 orml =1 (ml ,1
is equivalent to the choiceml =0). To calculate relaxation
period we should calculateZij , then use formula(6). To find
error threshold, we need only investigateZ0=Tr expf−bHg,
becauseZ andZ0 have the same bulk singularity, connected
with error threshold. Calculation ofZ0 is an easier problem,
as there is a translation symmetryl → l +1, and we can
chooseml =m,hl =h.

Let us consider the case, whenml =m,hl =h. Then we con-
sider an expression forZ0;oi ZsSi ,Sid:

Z0 = A
Nb

2pi
E

−`

`

dmE
−i`

i`

dh

3expFJ0Nbmp + Nhbm− g0bN + N ln zSB,
h

L
,LDG .

sA13d

We have an expression for the 1D IsingL spin partition
function in a magnetic fieldh/L f2g at inverse temperatureB:

zSB,
h

L
,LD = o

sl

expFBo
l

slsl+1 +
bh

L
o

l

slG = l+
L + l−

L,

sA14d

l± = eBcoshSbh

L
D ±Îe2B sinh2Sbh

L
D + e−2B.

For the largeL, from Eq. (A9) we have

zSB,
h

L
,LD = eBLFS1 +

b

L
Îh2 + g0

2DL

+ S1 −
b

L
Îh2 + g0

2DLG
=2eBL coshsbÎh2 + g0

2d. sA15d

In Eq. sA14d, we consider a sum overL spins, while in
Eq. sA10d there is a sum overL−1 spins.

Equations(A2), (A13), and(A15) imply that

Z0 =
Nb

2pi
E

−`

`

dmE
−i`

i`

dh expfNfln 2 coshsbÎh2 + g0
2d

+ J0bmp − bhm− bg0gg. sA16d

The saddle point condition viam andh gives

ln Z0 = N ln 2 coshfbÎh2 + g0
2g + J0Nbmp − Nhbm− g0bN,

sA17d

h = J0pmp−1, m=
h

Îh2 + g0
2
tanhfbÎh2 + g0

2g.

Let us consider the limit of largep and finiteb:

h = J0p, m= 1, lnZ0 = NJ0b − Ng0b. sA18d

This is the ferromagnetic phase of the modelf24g. The phase
transition can be found, when lnZ0 in Eq. sA18d with m
=1 and lnZ0 in Eq. sA11d with m=0 coincide:

J0b = ln 2 + ln coshsbg0d. sA19d

At the limit of b→` sthis corresponds to the infinite relax-
ation periodd we have

J0 = g0. sA20d

This is an error threshold condition. The ferromagnetic phase
of Eq. sA18d corresponds to the effective selection and the
paramagnetic phase of Eq.sA11d to absence of selection.
Thus the thermodynamic approach gives accurately the bulk
characteristics. To calculate relaxation dynamics we should
calculate ZsSi ,Sjd instead of the simpler expressionZ0

;oi ZsSi ,Sid.
Correlators in Suzuki-Trotter method. Let us calculate

now our main objects,kS1uTstduSil andkSjuTstduSil , j Þ1 with
Tstd;e−Ht. From now on, we taket instead ofb in previous
equations of the Appendix.

While looking via the saddle point the maximum ofZ,
one should divide the total period of timet into K pieces and
as a saddle point solution take eitherml ,1 or ml =1 for 1
ø l øK. The choiceml =0 is connected with the random dif-
fusion, the choiceml =1 corresponds to the evolution in peak
configuration. One should take a scheme, giving maximal
value of kSjuTstduSil.

To calculatekS1uTstduSil, we simply takeK=2. We divide
the total timet into two periods: for periodf0,t0g there is a
random diffusion from the original configurationSi to the
peak one, then an evolution inS1 for the periodft0,tg. Thus,
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while calculatingkS1uTstduSil we consider an ansatz for the
saddle point solution:

ml = 0, 1ø l , L0; ml = 1, l . L0, sA21d

whereL0= t0L / t. We should consider all possible values of
L0.

For the partml =0 we denoteTstd=Tdif f and for the part
ml =1 we denoteTstd=Tint. Thus

kS1uTstduSil → kS1uTintst − t0duS1lkS1uTdif fst0duSil.

sA22d

To calculatekS1uTintst− t0duS1l, we take Eq.sA5d with the
boundary conditionsm1=1,mL=1. Thenhj →` like the ones
in Eq. sA18d and all the diffusion terms disappear and we
have a result of Eq.s10d:

kS1uTintst − t0duS1l = eNsJ0−g0dst−t0d. sA23d

Let us considerkSjuTdif fstduSil. We have fori Þ1, j Þ1,

ml = 0, 1ø l ø L, sA24d

and therefore we miss the interaction term in Eq.sA5d fac-
cording to Eq.sA17d interaction term disappears for any fi-
nite m,1g. Using Eqs.sA7d and sA11d, we derive

kSjuTdif fstduSil = expFNS1 + m

2
ln cossg0bd

+
1 − m

2
ln sinhsg0bd − g0bDG ,

sA25d

wherem is an overlap of configurationsSi andSj.
For the situation of Eq.(A21) we derive the result of Eq.

(16):

kS1uTstduSil = eNsJ0−gdst−t0dkS1uexpfo
i

g0ssx − 1dt0guSil,

sA26d

wheret0 gives a maximum of Eq.sA26d.
For other matrix elements we take as in Eq.(12),

kSjuTstduSil = kSjuTdif fstduSil. sA27d

Other fitnesses function.What other models can be solved
with the same method? Quantum random energy model

(REM) has been considered in Refs.[23,24]. In that model
there is alsomp-type random spin-spin interaction atp→`.
This situation is similar to the case considered in the current
work, only calculations are more involved. In the similar
way it is possible to solve ferromagnetic REM with multi-
spin interactions. The close hierarchic models such as royal
road [26] or generalized random energy model[27] are also
solvable in this approach.

The case of finitep in Eq. (9) is too complicated. In
Suzuki-Trotter formalism one should consider different finite
ml ,hl and deal with a partition function of the 1D Ising
model, where the magnetic field changes along the chain of
Eq. (A6). There are self-consistent nonlinear equations. For
the bulk values ofhl and ml, we can take the result of Eq.
(A17), but there is a nontrivial boundary slice:hl =hsl /Ld,
wherehsxd is a nontrivial function. Even the analytical solu-
tion of the casep=2 is a highly nontrivial task[for the finite
values of p we derive field theoretical equations for the
sourcehsxd]. For p=2 the method of Ref.[14] is preferable
to investigate the steady state distribution.

What about error threshold? We guess that from Eq.
(A16) we can derive correct phase transition point, when the
expression for lnZ0 at b→`, ln Z0=bNfg0

2/Îh2+g0
2+J0m

p

−g0g coincides with the corresponding expression of Eq.
(A11) and we thus have

1 =
Jcpmp−2

ÎsJcpmp−1d2 + g0
2
, g0 =

g0
2

ÎsJcpmp−1d2 + g0
2

+ Jcm
p.

sA28d

The error threshold condition is

J0 . Jc. sA29d

For the case ofp=2, Eq. sA28d gives Jc=g0/2, which is
consistent with the result of Baakeet al. [14]. ForJ0.Jc, the
magnetizationm can be written as

m=Î1 −S g0

2J0
D2

, sA30d

which is also consistent with the result of Ref.f14g for the
magnetizationsnonzerom is an indicator of successful selec-
tion, butm does not have serious biological meaningf15g d.

We guess that Eq.(A28) gives error thresholdJc for p.2
as well.
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